N
N BLOCKSEC

Report for EOS
REX/Tokenomics 2.0

Date: June 24, 2024 Version: 1.0
Contact: contact@blocksec.com

mailto:contact@blocksec.com

Contents

Chapter 1 Introduction
1.1 About TargetContracts e e
1.2 DiscClaimer e e e e e e e e e e
1.3 Procedure of Auditing L e e
1.3.1 Software Security e
1.3.2 DeFiSecurity e e e
1.3.3 NFT Security
1.3.4 Additional Recommendation o e
1.4 Security Model e e e e

Chapter 2 Findings
2.1 Software Security e e e e
2.1.1 Potential precision1oss e e
2.1.2 Potential incosistent block producercount
2.2 Additional Recommendation e
2.2.1 Check the validity of the totalweight

Report Manifest

Item Description
Client EOS Network
Target EOS REX/Tokenomics 2.0

Version History

Version Date Description

1.0 June 24, 2024 First release
Signature

E_ E Digitally signed by: BlockSec (https://blocksec.com)

=’

About BlockSec BlockSec focuses on the security of the blockchain ecosystem and col-
laborates with leading DeFi projects to secure their products. BlockSec is founded by top-
notch security researchers and experienced experts from both academia and industry. They
have published multiple blockchain security papers in prestigious conferences, reported sev -
eral zero-day attacks of DeFi applications, and successfully protected digital assets that are
worth more than 14 million dollars by blocking multiple attacks. They can be reached at Email,

Date: 2024-07-02 09:15:58+0000

Twitter and Medium.

SHA1 digest of public key: BAB106D3708BC6DE0963CE05E9478C24B326AE1C

https://www.blocksec.com
mailto:contact@blocksec.com
https://twitter.com/BlockSecTeam
https://blocksecteam.medium.com/

Chapter 1 Introduction

1.1 About Target Contracts

Information | Description

Type Smart Contract

Language | C++

Approach | Semi-automatic and manual verification

The focus of this audit is the EOS REX/Tokenomics 2.0 of the EOS Network. The EOS
ecosystem updates their system contracts via the pull request #150 1 and the ecosio.reward 2
repository.

Itis important to note that only the C++ source files of the pull requests and the fee contract
are included in the scope of this audit. Furthermore, all the dependencies of the smart contracts
within the audit scope are considered reliable in terms of both functionality and security, and
therefore, they are not included in the audit scope.

The auditing process is iterative. Specifically, we would audit the commits that fix the dis-
covered issues. If there are new issues, we will continue this process. The commit SHA values
during the audit are shown in the following table. Our audit report is responsible for the code
in the initial version (Version 1), as well as new code (in the following versions) to fix issues in
the audit report.

Project Version Commit Hash
eosio.reward Version 1 d894de7caafcb384971886376acb44039454b71f
PR #150 Version 1 04350f554d9dfad4e0568ee29c37£2b69f1298c18

1.2 Disclaimer

This audit report does not constitute investment advice or a personal recommendation.
It does not consider, and should not be interpreted as considering or having any bearing on,
the potential economics of a token, token sale or any other product, service or other asset.
Any entity should not rely on this report in any way, including for the purpose of making any
decisions to buy or sell any token, product, service or other asset.

This audit report is not an endorsement of any particular project or team, and the report
does not guarantee the security of any particular project. This audit does not give any war-
ranties on discovering all security issues of the smart contracts, i.e., the evaluation result does
not guarantee the nonexistence of any further findings of security issues. As one audit can-
not be considered comprehensive, we always recommend proceeding with independent audits
and a public bug bounty program to ensure the security of smart contracts.

1https://github.com/eosnetworkfoundation/eos—system—contracts/pull/lBO

2https://github.com/eosnetworkfoundation/eosio.reward

https://github.com/eosnetworkfoundation/eos-system-contracts/pull/150
https://github.com/eosnetworkfoundation/eosio.reward

N sLOCHSEC

The scope of this audit is limited to the code mentioned in Section 1.1. Unless explicitly
specified, the security of the language itself (e.g., the C++ language), the underlying compiling
toolchain and the computing infrastructure (e.g., the blockchain runtime and system contracts
of the EOS network) are out of the scope.

1.3 Procedure of Auditing

We perform the audit according to the following procedure.

- Vulnerability Detection We first scan smart contracts with automatic code analyzers,
and then manually verify (reject or confirm) the issues reported by them.

- Semantic Analysis We study the business logic of smart contracts and conduct further
investigation on the possible vulnerabilities using an automatic fuzzing tool (developed by
our research team). We also manually analyze possible attack scenarios with independent
auditors to cross-check the result.

- Recommendation We provide some useful advice to developers from the perspective
of good programming practice, including gas optimization, code style, and etc.

We show the main concrete checkpoints in the following.

1.3.1 Software Security

x Reentrancy

* DOS

x Access control

x Data handling and data flow

x Exception handling

x Untrusted external call and control flow
% Initialization consistency

x Events operation

x Error-prone randomness

x Improper use of the proxy system

1.3.2 DeFi Security

x Semantic consistency

x Functionality consistency
x Permission management
«x Business logic

x Token operation

x Emergency mechanism

x Oracle security

«x Whitelist and blacklist

x Economic impact

x Batch transfer

®

N sLOCHSEC

1.3.3 NFT Security

x Duplicated item
x Verification of the token receiver
x Off -chain metadata security

1.3.4 Additional Recommendation

x Gas optimization
x Code quality and style

The previous checkpoints are the main ones. We may use more checkpoints during the
auditing process according to the functionality of the project.

1.4 Security Model

To evaluate the risk, we follow the standards or suggestions that are widely adopted by both
industry and academy, including OWASP Risk Rating Methodology 2 and Common Weakness
Enumeration . The overall severity of the risk is determined by likelihood and impact. Specif -
ically, likelihood is used to estimate how likely a particular vulnerability can be uncovered and
exploited by an attacker, while impact is used to measure the consequences of a successful
exploit.

In this report, both likelihood and impact are categorized into two ratings, i.e., high and low
respectively, and their combinations are shown in Table 1.1.

Table 1.1: Vulnerability Severity Classification

- High Medium
®
o
£
- Low Medium Low
High Low
Likelihood

Accordingly, the severity measured in this report are classified into three categories: High,
Medium, Low. For the sake of completeness, Undetermined is also used to cover circum-
stances when the risk cannot be well determined.

Furthermore, the status of a discovered item will fall into one of the following four cate-
gories:

- Undetermined No response yet.
- Acknowledged The item has been received by the client, but not confirmed yet.

3https://owasp.org/www - community/ OWASP_Risk_Rating_Methodology
“https://cwe.mitre.org/

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cwe.mitre.org/

N sLOCHSEC

- Confirmed The item has been recognized by the client, but not fixed yet.
- Fixed The item has been confirmed and fixed by the client.

Chapter 2 Findings

In total, we found two potential security issues. Besides, we have one recommendation.
- Low Risk: 2
- Recommendation: 1

ID | Severity | Description Category Status
Low Potential precision loss ﬁg}‘tware Secu- Acknowledged
2 Low Potential incosistent block producer Spftware Secu- Acknowledged
count rity
3 - Check the validity of the total weight Recommendation| Acknowledged

The details are provided in the following sections.

2.1 Software Security

2.1.1 Potential precision loss

Severity Low

Status Acknowledged

Introduced by Version 1 (PR #150)

Description In the eosio.bpay contract, when calculating rewards for each block producer,
the calculation (reward = quantity / producer_count) can potentially result in precision loss with

low possibility. This may lead to some EOS tokens not being distributed correctly to the block
producers, remaining instead in the eosio.bpay contract.

18 void bpay::on_transfer(const name from, const name to, const asset quantity, const string memo
) {

19 if (from == get_self() || to != get_self()) {

20 return;

21 }

22

23 // ignore eosio system incoming transfers (caused by bpay income transfers eosio => eosio.

bpay => producer)

24 if (from == "eosio"_n) return;

25

26 symbol system_symbol = eosiosystem::system_contract::get_core_symbol();

27

28 check(quantity.symbol == system_symbol, "only core token allowed");

29

30 rewards_table _rewards(get_self(), get_self().value);

31 eosiosystem: :producers_table _producers("eosio"_n, "eosio"_n.value);

32

33 eosiosystem: :global_state_singleton _global("eosio"_n, "eosio"_n.value);

34 check(_global.exists(), "global state does not exist");

35 uint16_t producer_count = _global.get().last_producer_schedule_size;

36

N sLOCHSEC

‘ 37 asset reward = quantity / producer_count;
!

Listing 2.1: contracts/eosio.bpay/src/eosio.bpay.cpp

Impact Potential precision loss results in reduced payments to block producers and some
EOS tokens being locked in the eosio.bpay contract.

Suggestion Refactor the payment calculation logic.

Feedback from the Project This is known, for the sake of reducing complexity, it wasn't worth
adding “dust” calculations.

2.1.2 Potential incosistent block producer count

Severity Low

Status Acknowledged

Introduced by Version 1 (PR #150)

Description When calculating rewards for block producers in the eosio.bpay contract, the
producer_count is directly read from the global state, while the producers are read and filtered
from the global producers array. There is a very low possibility that there are fewer efficient
active block producers than the producer_count. In this case, the rewards to block producers
can be incorrectly distributed.

33 eosiosystem: :global_state_singleton _global("eosio"_n, "eosio"_n.value);

34 check(_global.exists(), "global state does not exist");

35 uint16_t producer_count = _global.get().last_producer_schedule_size;
36

37 asset reward = quantity / producer_count;

38

39 // get producer with the most votes

40 // using “by_votes” secondary index

41 auto idx = _producers.get_index<"prototalvote"_n>();
42 auto prod = idx.begin();

43

44 // get top n producers by vote, excluding inactive
45 std::vector<name> top_producers;

46 while (true) {

47 if (prod == idx.end()) break;

48 if (prod->is_active == false) continue;

49

50 top_producers.push_back(prod->owner) ;

51

52 if (top_producers.size() == producer_count) break;
53

54 prod++;

55 }

Listing 2.2: contracts/eosio.bpay/src/eosio.bpay.cpp

Impact Inrare circumstances, there may not be enough effective block producers (fewer than
the global producer_count).

Suggestion Revise the corresponding code logic.

N sLOCHSEC

2.2 Additional Recommendation

2.2.1 Check the validity of the total weight

Status Acknowledged
Introduced by Version 1 (eosio.reward)

Description Intheeosio.reward contract, itisrecommendedto check whetherthe total weight
is zero, as strategies can be changed and deleted.

46 [[eosio::action]]

47 void reward::distribute()

48 {

49 // any authority is allowed to call this action

50

51 strategies_table _strategies(get_self(), get_self().value);
52 const uint32_t total_weight = get_total_weight();

Listing 2.3: eosio.reward.cpp

Impact The calculated total_weight can be zero.
Suggestion Add sanity checks.

Feedback from the Project | believe zero weight is still a valid value, this would mean no re-
wards are being distributed, otherwise we have no mechanism to stop the eosio.reward con-
tract.

	1 Introduction
	1.1 About Target Contracts
	1.2 Disclaimer
	1.3 Procedure of Auditing
	1.3.1 Software Security
	1.3.2 DeFi Security
	1.3.3 NFT Security
	1.3.4 Additional Recommendation

	1.4 Security Model

	2 Findings
	2.1 Software Security
	2.1.1 Potential precision loss
	2.1.2 Potential incosistent block producer count

	2.2 Additional Recommendation
	2.2.1 Check the validity of the total weight

		2024-07-02T17:15:58+0800

