
Security Audit Report for EOS EVM

Date: Sep 12, 2023

Version: 1.1

Contact: contact@blocksec.com

mailto:contact@blocksec.com

Contents

1 Introduction 1
1.1 About Target Contracts . 1

1.2 Disclaimer . 1

1.3 Procedure of Auditing . 2

1.3.1 Software Security . 2

1.3.2 DeFi Security . 2

1.3.3 NFT Security . 3

1.3.4 Additional Recommendation . 3

1.4 Security Model . 3

2 Findings 4
2.1 Software Security . 4

2.1.1 Lack of valid ChainID check . 4

2.1.2 Potential incorrect state for smart contract destruction 4

2.2 Notes . 6

2.2.1 Nonce issue of the reserved addresses . 6

2.2.2 The gas fee payment mechanism . 7

i

Report Manifest

Item Description
Client EOS Network Foundation
Target EOS EVM

Version History

Version Date Description
1.0 July 28, 2023 First Version
1.1 Sep 12, 2023 Update commit hashes of fixes

About BlockSec The BlockSec Team focuses on the security of the blockchain ecosystem, and col-

laborates with leading DeFi projects to secure their products. The team is founded by top-notch security

researchers and experienced experts from both academia and industry. They have published multiple

blockchain security papers in prestigious conferences, reported several zero-day attacks of DeFi applica-

tions, and released detailed analysis reports of high-impact security incidents. They can be reached at

Email, Twitter and Medium.

ii

https://www.blocksec.com
mailto:contact@blocksec.com
https://twitter.com/BlockSecTeam
https://blocksecteam.medium.com/

Chapter 1 Introduction

1.1 About Target Contracts

Information Description
Type Smart Contract
Language C++
Approach Semi-automatic and manual verification

The target of this audit is to review the implementation of the EOS EVM, which is a compatibility layer

deployed on top of the EOS blockchain. The EOS EVM serves as an implementation of the Ethereum

Virtual Machine (EVM). It is implemented in C++ and compiled to a WASM binary to be executed within

the EOS blockchain. The EOS EVM utilizes a modified version of Silkworm and Evmone for the execution

of the EVM operations.

The auditing process is iterative. Specifically, we would audit the commits that fix the discovered

issues. If there are new issues, we will continue this process. The commit SHA values during the audit are

shown in the following table. Our audit report is responsible for the code in the initial version (Version 1),

as well as new code (in the following versions) to fix issues in the audit report.

Project Version Commit Hash

EOS EVM1 Version 1 8f649397c2f20cd66dd936440c735569bbf969c3

Version 2 fd6d03b0d7aa63cc54d6d654601de31e126bb6e5

Silkworm2 Version 1 b8470c70901a2896fe85fc537b375f7b87a15923

Evmone3 Version 1 24365b7d5153972afb06d5ff0c51f5fecff19481

Ethash4 Version 1 8721c04c79584806c4f47f69684e01df6792cd48

1.2 Disclaimer

This audit report does not constitute investment advice or a personal recommendation. It does not

consider, and should not be interpreted as considering or having any bearing on, the potential economics

of a token, token sale or any other product, service or other asset. Any entity should not rely on this report

in any way, including for the purpose of making any decisions to buy or sell any token, product, service or

other asset.

This audit report is not an endorsement of any particular project or team, and the report does not

guarantee the security of any particular project. This audit does not give any warranties on discovering

all security issues of the smart contracts, i.e., the evaluation result does not guarantee the nonexistence

of any further findings of security issues. As one audit cannot be considered comprehensive, we always

1
https://github.com/eosnetworkfoundation/eos-evm/tree/main/contract

2
https://github.com/eosnetworkfoundation/silkworm. Note that in this repository, only the source files related with EOS
EVM contract are within the audit scope, while other files are out of scope.

3
https://github.com/eosnetworkfoundation/evmone/tree/master/lib

4
https://github.com/eosnetworkfoundation/ethash/tree/master/lib

1

https://github.com/eosnetworkfoundation/eos-evm/tree/main/contract
https://github.com/eosnetworkfoundation/silkworm
https://github.com/eosnetworkfoundation/evmone/tree/master/lib
https://github.com/eosnetworkfoundation/ethash/tree/master/lib

recommend proceeding with independent audits and a public bug bounty program to ensure the security

of smart contracts.

The scope of this audit is limited to the code mentioned in Section 1.1. Unless explicitly specified, the

security of the language itself (e.g., the C++ language), the underlying compiling toolchain (e.g. the EOS

blockchain and the CDT SDK) and the computing infrastructure are out of the scope.

1.3 Procedure of Auditing

We perform the audit according to the following procedure.

- Vulnerability Detection We first scan smart contracts with automatic code analyzers, and then

manually verify (reject or confirm) the issues reported by them.

- Semantic Analysis We study the business logic of smart contracts and conduct further investiga-

tion on the possible vulnerabilities using an automatic fuzzing tool (developed by our research team).

We also manually analyze possible attack scenarios with independent auditors to cross-check the

result.

- Recommendation We provide some useful advice to developers from the perspective of good

programming practice, including gas optimization, code style, and etc.

We show the main concrete checkpoints in the following.

1.3.1 Software Security

∗ Reentrancy

∗ DoS

∗ Access control

∗ Data handling and data flow

∗ Exception handling

∗ Untrusted external call and control flow

∗ Initialization consistency

∗ Events operation

∗ Error-prone randomness

∗ Improper use of the proxy system

1.3.2 DeFi Security

∗ Semantic consistency

∗ Functionality consistency

∗ Permission management

∗ Business logic

∗ Token operation

∗ Emergency mechanism

∗ Oracle security

∗ Whitelist and blacklist

∗ Economic impact

∗ Batch transfer

2

1.3.3 NFT Security

∗ Duplicated item

∗ Verification of the token receiver

∗ Off-chain metadata security

1.3.4 Additional Recommendation

∗ Gas optimization

∗ Code quality and style�
Note The previous checkpoints are the main ones. We may use more checkpoints during the auditing

process according to the functionality of the project.

1.4 Security Model

To evaluate the risk, we follow the standards or suggestions that are widely adopted by both industry

and academy, including OWASP Risk Rating Methodology 5 and Common Weakness Enumeration 6.

The overall severity of the risk is determined by likelihood and impact. Specifically, likelihood is used to

estimate how likely a particular vulnerability can be uncovered and exploited by an attacker, while impact

is used to measure the consequences of a successful exploit.

In this report, both likelihood and impact are categorized into two ratings, i.e., high and low respec-

tively, and their combinations are shown in Table 1.1.

Table 1.1: Vulnerability Severity Classification

Im
pa

ct

High High Medium

Low Medium Low

High Low

Likelihood

Accordingly, the severity measured in this report are classified into three categories: High, Medium,

Low. For the sake of completeness, Undetermined is also used to cover circumstances when the risk

cannot be well determined.

Furthermore, the status of a discovered item will fall into one of the following four categories:

- Undetermined No response yet.

- Acknowledged The item has been received by the client, but not confirmed yet.

- Confirmed The item has been recognized by the client, but not fixed yet.

- Fixed The item has been confirmed and fixed by the client.

5https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
6https://cwe.mitre.org/

3

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cwe.mitre.org/

Chapter 2 Findings

In total, we find two potential security issues. Besides, we also have two notes.

- High Risk: 2

- Note: 2

ID Severity Description Category Status
1 High Lack of valid ChainID check Software Security Fixed

2 High
Potential incorrect state for smart contract de-
struction

Software Security Fixed

3 - Nonce issue of the reserved addresses Note -
4 - The gas fee payment mechanism Note -

The details are provided in the following sections.

2.1 Software Security

2.1.1 Lack of valid ChainID check

Severity High

Status Fixed in Version 2 in the EOS EVM repository

Introduced by Version 1 in the Silkworm repository

Description According to EIP-155, a transaction must have a (matched) ChainID for replay protection.

However, in the transaction pre-validation, Silkworm only checks the ChainID when there is one. In this

case, legacy (pre EIP-155) transactions can pass the pre-validation phase.

33 ValidationResult pre_validate_transaction(const Transaction& txn, uint64_t block_number, const

ChainConfig& config,

34 const std::optional<intx::uint256>& base_fee_per_gas) {

35 const evmc_revision rev{config.revision(block_number)};

36
37 if (txn.chain_id.has_value()) {

38 if (rev < EVMC_SPURIOUS_DRAGON || txn.chain_id.value() != config.chain_id) {

39 return ValidationResult::kWrongChainId;

40 }

41 }

Listing 2.1: silkworm/core/silkworm/consensus/engine.cpp

Impact The validity of the ChainID is not checked if the transaction is of legacy type. It results in that

legacy transactions of other chains can be replayed in the EOS EVM blockchain.

Suggestion Revise the ChainID check logic.

2.1.2 Potential incorrect state for smart contract destruction

Severity High

Status Fixed in Version 2 in the EOS EVM repository

4

Introduced by Version 1 in the EOS EVM repository

Description EOS EVM uses several multi_index tables to store EVM account and storage state on the

EOS blockchain:

account_table is used to store the account information (nonce, balance and code hash).

storage_table is used to store the key-value pairs for the smart contracts.

gc_store_table is used to store the deleted accounts.

Specifically, when a smart contract is self-destructed, the account ID of the smart contract would be

recorded into the gc_store_table. The gc action would iterate over the gc_store_table and perform

the real deletion on the storage_table.

When an account in the EOS EVM becomes active through the creation of a smart contract, a new

incremental ID (aka a primary key) is generated in the account_table. This same ID is then used to ini-

tialize the entry for the smart contract in the storage_table. However, when a smart contract is destroyed,

the corresponding account entry in the account_table is removed, and the account ID for the destroyed

contract is logged into the gc_store_table, awaiting removal by the gc action.

However, the primary key for a multi_index table is not monotonically increasing. The removal of the

entry in the account_table can result in the decrease of the primary key in a multi_index table. Besides,

the deletion of the destructed contract in the account_table (immediately) and storage_table (after the

gc action) is asynchronous, which can result in the incorrect state of the created contracts.

For example, a newly created smart contract may end up with an incorrect state if the following

conditions are met within the same transaction:

1. The transaction creates a new contract, referred to as contract A.

2. It simultaneously destroys an existing contract, referred to as contract B.

3. Contract B, which is being destroyed, has the largest primary key.

If all the above conditions are met, contract A could potentially inherit all the storage slots from contract B.

Moreover, if a gc action is later invoked, the storage slots of contract A might also be cleared.

The following code snippet illustrates the logic for updating the account_table. The emplace closure

is used for creating a new state entry and invokes the available_primary_key method to generate a new

primary key.

95 void state::update_account(const evmc::address& address, std::optional<Account> initial,

96 std::optional<Account> current) {

97 check(!_read_only, "ro state");

98 const bool equal{current == initial};

99 if(equal) return;

100
101 account_table accounts(_self, _self.value);

102 auto inx = accounts.get_index<"by.address"_n>();

103 auto itr = inx.find(make_key(address));

104 ++stats.account.read;

105
106 auto emplace = [&](auto& row) {

107 row.id = accounts.available_primary_key();

108 row.eth_address = to_bytes(address);

109 row.nonce = current->nonce;

110 row.balance = to_bytes(current->balance);

111 // Codes are not supposed to changed in this call.

112 row.code_id = std::nullopt;

5

113 };

Listing 2.2: contract/src/state.cpp

The following code snippet 1 shows the logic for the available_primary_key method of the multi_index

table. This function determines the next primary key by finding the largest key (i.e., the end of the iterator).

Therefore, if the entry of the largest key is deleted from a multi_index table, the available_primary_key

would be decreased.

1351 uint64_t available_primary_key()const {

1352 if(_next_primary_key == unset_next_primary_key) {

1353 // This is the first time available_primary_key() is called for this multi_index

instance.

1354 if(begin() == end()) { // empty table

1355 _next_primary_key = 0;

1356 } else {

1357 auto itr = --end(); // last row of table sorted by primary key

1358 auto pk = itr->primary_key(); // largest primary key currently in table

1359 if(pk >= no_available_primary_key) // Reserve the tags

1360 _next_primary_key = no_available_primary_key;

1361 else

1362 _next_primary_key = pk + 1;

1363 }

1364 }

1365
1366 eosio::check(_next_primary_key < no_available_primary_key, "next primary key in table is

at autoincrement limit");

1367 return _next_primary_key;

1368 }

Listing 2.3: cdt/3.1.0/include/eosiolib/contracts/eosio/multi_index.hpp

Impact A newly created contract may inherit all the state from a previously destructed contract if certain

conditions are met.

Suggestion Revise the smart contract destruction logic.

2.2 Notes

2.2.1 Nonce issue of the reserved addresses

Introduced by Version 1 in the EOS EVM repository

Description The EOS EVM contract includes a feature for bridging between the EOS blockchain and

EOS EVM, which involves creating special “reserved addresses”. During the execution of the execute_tx

function, the nonce and balance of the reserved address are overwritten. It’s worth noting that this code

snippet occurs before transaction validation.

227 if(from_self) {

228 check(is_reserved_address(*tx.from), "actions from self without a reserved from address are

unexpected");

1The code snippet is part of the CDT SDK: https://github.com/AntelopeIO/cdt. This repository is not within the scope of
this audit.

6

https://github.com/AntelopeIO/cdt

229 const name ingress_account(*extract_reserved_address(*tx.from));

230
231 const intx::uint512 max_gas_cost = intx::uint256(tx.gas_limit) * tx.max_fee_per_gas;

232 check(max_gas_cost + tx.value < std::numeric_limits<intx::uint256>::max(), "too much gas");

233 const intx::uint256 value_with_max_gas = tx.value + (intx::uint256)max_gas_cost;

234
235 populate_bridge_accessors();

236 balance_table.modify(balance_table.get(ingress_account.value), eosio::same_payer, [&](

balance& b){

237 b.balance -= value_with_max_gas;

238 });

239 inevm->set(inevm->get() += value_with_max_gas, eosio::same_payer);

240
241 ep.state().set_balance(*tx.from, value_with_max_gas);

242 ep.state().set_nonce(*tx.from, tx.nonce);

243 }

Listing 2.4: contract/src/actions.cpp

Transactions with reserved addresses as the from address have no limitations, which means that

these addresses can invoke and create smart contracts. In fact, a reserved address can create smart

contracts of different codes on the same address by using the SELFDESTRUCT opcode.

However, there is currently an access control in place that requires the execute_tx function to be

called by the contract itself if the from address of the transaction is a reserved address. The EOS EVM

contract only calls itself in order to bridge token transfers between the EOS blockchain and EOS EVM. It’s

important to note that any future updates to the EOS EVM contract must not allow reserved addresses

to create smart contracts, as this would violate the account design in EVM and could lead to potential

problems.

2.2.2 The gas fee payment mechanism

Introduced by Version 1 in the EOS EVM repository

Description The pushtx action is the entry function in the EOS EVM contract, which allows users to

send their EVM transactions to the contract. However, there is an additional miner parameter in this

function that specifies which account will receive the transaction fees. Initially, before the execution of the

entire transaction, the fee recipient is set to the EOS EVM contract itself. However, after the transaction

execution, a portion of the gas fees are transferred to the account specified by the miner.

374void evm_contract::pushtx(eosio::name miner, const bytes& rlptx) {

375 LOGTIME("EVM START");

376
377 assert_unfrozen();

378
379 eosio::check((get_sender() != get_self()) || (miner == get_self()),

380 "unexpected error: EVM contract generated inline pushtx without setting itself as

the miner");

Listing 2.5: contract/src/actions.cpp

The current design of the EOS EVM contract has a potential front-running problem, which means

that malicious actors can front-run any transaction by calling the pushtx action and replacing the miner

7

parameter with their own address. Through front-running, these actors can make risk-free profits if the gas

fees paid by the transaction are greater than the CPU and NET fees of the EOS transaction.

Besides, according to the contract specifications, the EOS EVM contract itself is responsible for paying

the fees associated with state storage. The relevant code snippet in the pushtx function is shown below.

394 evm_runtime::state state{get_self(), get_self()}; // @audit: the second parameter ram_payer =

get_self()

395 silkworm::ExecutionProcessor ep{block, engine, state, *found_chain_config->second};

Listing 2.6: contract/src/actions.cpp

If the RAM fee required for writing a slot in the EVM is greater than the gas fee paid by the transaction

sender, it could potentially lead to a DoS situation. In such a scenario, user activity would gradually

decrease the balance of the EOS EVM contract, eventually leading to all user transactions failing due to

insufficient funds to pay for RAM fees.

8

	1 Introduction
	1.1 About Target Contracts
	1.2 Disclaimer
	1.3 Procedure of Auditing
	1.3.1 Software Security
	1.3.2 DeFi Security
	1.3.3 NFT Security
	1.3.4 Additional Recommendation

	1.4 Security Model

	2 Findings
	2.1 Software Security
	2.1.1 Lack of valid ChainID check
	2.1.2 Potential incorrect state for smart contract destruction

	2.2 Notes
	2.2.1 Nonce issue of the reserved addresses
	2.2.2 The gas fee payment mechanism

		2023-09-12T16:01:22+0800
	BlockSec Audit Team

